Картинка
Home Page Departments Training Ukrainian-German Conference RER0034

 

Department of Charged Particle Beam Physics

Main publications

2015

  1. Artem Ponomarov, Sergey V. Kolinko, Alexander G. Ponomarev, Nannan Liu Five magnetic quadrupole lenses with four power supplies as a single-stage lens system of a nuclear microprobe // NIM B 348 (2015) pp. 83-87. http://dx.doi.org/10.1016/j.nimb.2014.11.088
  2. A.A. Ponomarova, G.S. Vorobjov, A.G. Ponomarev Ion optics of probe-forming systems on the base of magnetic quadrupole lenses with conical aperture // NIM B 348 (2015) pp. 88-91. http://dx.doi.org/10.1016/j.nimb.2014.11.069
  3. A.V. Romanenko, A.G. Ponomarev Formation of ion beam with high current density for micro irradiation techniques // NIM B 348 (2015) pp. 115-118. http://dx.doi.org/10.1016/j.nimb.2015.01.073
  4. D. Magilin, A. Ponomarev, V. Rebrov, A. Ponomarov High-voltage scanning ion microscope: Beam optics and design // NIM B 350 (2015) pp. 32-35. http://dx.doi.org/10.1016/j.nimb.2015.03.032

2014

  1. Dahyun Nam, A.S. Opanasyuk, P.V. Koval, A.G. Ponomarev, Ah Reum Jeong, Gee Yeong Kim, William Jo, Hyeonsik Cheong Composition variations in Cu2ZnSnSe4 thin films analyzed by X-ray diffraction, energy dispersive X-ray spectroscopy, particle induced X-ray emission, photoluminescence, and Raman spectroscopy // Thin Solid Films 562(2014) pp. 109-113. http://dx.doi.org/10.1016/j.tsf.2014.03.079
  2. A.S. Opanasyuk, P.V. Koval, D. Nam, H. Cheong, A.R. Jeong, W. Jo, A.G. Ponomarev The structure, phase and chemical composition of CZTSe thin films // Functional materials, 2014, Vol. 21, No. 2, p.1-7. http://dx.doi.org/10.15407/fm21.02.164

2013

  1. S.V. Kolinko, A.G. Ponomarev, V.A. Rebrov Precise centering and field characterization of magnetic quadrupole lenses // NIM A 700 (2013) pp. 70-74. http://dx.doi.org/10.1016/j.nima.2012.10.072
  2. K.I. Melnik, D.V. Magilin, A.G. Ponomarev Experimental results of microprobe focusing by quadruplet with four independent lens power supplies // NIM B 306 (2013) pp. 17-20. http://dx.doi.org/10.1016/j.nimb.2013.01.037
  3. R. Krause Rehberg, A. D. Pogrebnyak, V. N. Borisyuk, M. V. Kaverin, A. G. Ponomarev, M. A. Bilokur, K. Oyoshi, Y. Takeda, V. M. Beresnev, O. V. Sobol’ Analysis of local regions near interfaces in nanostructured multicomponent (Ti-Zr-Hf-V-Nb)N coatings produced by the cathodic-arc-vapor-deposition from an arc of an evaporating cathode // Physics of Metals and Metallography 114 (2013) pp. 672-680. http://dx.doi.org/10.1134/S0031918X13080061
  4. D. Pogrebnyak, V. M. Beresnev, D. A. Kolesnikov, M. V. Kaverin, A. P. Shypylenko, K. Oyoshi, Y. Takeda, R. Krause-Rehberg, A. G. Ponomarev The effect of segregation and thermodiffusion on the formation of interfaces in nanostructured (Ti-Hf-Zr-V-Nb)N multielement coatings // Technical Physics Letters 39 (2013) pp. 280-283. http://dx.doi.org/10.1134/S1063785013030231

2012

  1. A. D. Pogrebnyak, A. G. Ponomarev, D. A. Kolesnikov, V. M. Beresnev, F. F. Komarov, S. S. Mel’nik, M. V. Kaverin Effect of mass transfer and segregation on the formation of superhard nanostructured Ti-Hf-N(Fe) catings // Technical Physics Letters. – 2012. – V. 38, issue 7. – P. 623-626. http://dx.doi.org/10.1134/S1063785012070103
  2. A D Pogrebnjak, A G Ponomarev, Anatolii P Shpak and Yu A Kunitskii Application of micro- and nanoprobes to the analysis of small-sized 3D materials, nanosystems, and nanoobjects // Physics-Uspekhi 55 (2012) pp. 270-300. http://dx.doi.org/10.3367/UFNe.0182.201203d.0287

2011

  1. A.G. Ponomarev, A.A. Ponomarov, V.I. Miroshnichenko Nonlinear processes of probe formation of a beam with inhomogeneous phase density at nuclear microprobe // NIM B 269 (2011) pp. 2197-2201. http://dx.doi.org/10.1016/j.nimb.2011.02.022
  2. A.A. Ponomarova, K.I. Melnik, G.S. Vorobjov, A.G. Ponomarev One-stage probe-forming systems with quadrupole lenses excited by individual power supplies // NIM B 269 (2011) pp. 2202-2205. http://dx.doi.org/10.1016/j.nimb.2011.02.025

2010

  1. G.S.Vorobyov, A.G.Ponomarev, A.A.Ponomareva, A.A.Drozdenko, A.A.Rybalko Application of focused charge-particle beams of in manufacturing of nanocomponents // Telecommunications and Radio Engineering 69 (2010) pp. 355-365. http://dx.doi.org/10.1615/TelecomRadEng.v69.i4.50
  2. G. Ponomarev, G. S. Vorobjov, A. A. Ponomarova Optimization of the quadrupole probe-forming system with individual power supplies for lenses // Radioelectronics and Communications Systems 53(2010) pp.113-118. http://dx.doi.org/10.3103/S0735272710020068

2009

  1. D.V. Magilin, A.G. Ponomarev, V.A. Rebrov, N.A. Sayko, K.I. Melnik, V.I. Miroshnichenko, V.Y. Storizhko Performance of the Sumy nuclear microprobe with the integrated probe-forming system // NIM B 267 (2009) pp. 2046-2049. http://dx.doi.org/10.1016/j.nimb.2009.03.015
  2. A.A. Ponomarov, V.I. Miroshnichenko, A.G. Ponomarev Influence of the beam current density distribution on the spatial resolution of a nuclear microprobe // NIM B 267 (2009) pp. 2041-2045. http://dx.doi.org/10.1016/j.nimb.2009.03.091
  3. G. Ponomarev Optimal collimation of a charged particle beam in probe-forming systems // Technical Physics 54 (2009) pp. 276-280. http://dx.doi.org/10.1134/S1063784209020182

2008

  1. A.G. Ponomarev, V.I. Miroshnichenko, V.E. Storizhko The beam control in quadrupole probe-forming systems with allowance of correlation between angular distribution and energy spread of charged particles // Physics Procedia 1 (2008) pp. 99-104. http://dx.doi.org/10.1016/j.phpro.2008.07.083 2007
  2. V.A. Rebrov, A.G. Ponomarev, V.K. Palchik, N.G. Melnik The new design of magnetic quadrupole lens doublet manufactured from a single piece // NIM B 260 (2007) pp. 34-38. http://dx.doi.org/10.1016/j.nimb.2007.01.275
  3. V.E. Storizhko, A.G. Ponomarev, V.A. Rebrov, A.I. Chemeris, A.A. Drozdenko, A.B. Dudnik, V.I. Miroshnichenko, N.A. Sayko, P.A. Pavlenko, L.P. Peleshuk The Sumy scanning nuclear microprobe: Design features and first tests // NIM B 260 (2007) pp. 49-54. http://dx.doi.org/10.1016/j.nimb.2007.01.250
  4. N.A. Sayko, A.G. Ponomarev, A.A. Drozdenko Beam scanning control and data acquisition on the Sumy nuclear microprobe // NIM B 260 (2007) pp. 101-104. http://dx.doi.org/10.1016/j.nimb.2007.01.282 2005
  5. S. N. Abramovich, V. N. Zavjalov, A. G. Zvenigorodsky, I. G. Ignat’ev, D. V. Magilin, K. I. Melnik, A. G. Ponomarev Optimization of the probe-forming system for a scanning nuclear microprobe based on the ÉGP-10 electrostatic tandem accelerator // Technical Physics 50 (2005) pp. 146-151. http://dx.doi.org/10.1134/1.1866427
  6. Alexander G. Ponomarev, Konstantin I. Melnik, Valentin I. Miroshnichenko Parametric multiplets of magnetic quadrupole lenses: application prospects for probe-forming systems of nuclear microprobe // NIM B 231 (2005) pp. 86-93. http://dx.doi.org/10.1016/j.nimb.2005.01.039
  7. I.G. Ignat’ev, D.V. Magilin, V.I. Miroshnichenko, A.G. Ponomarev, V.E. Storizhko, B. Sulkio-Cleff Immersion probe-forming system as a way to the compact design of nuclear microprobe // NIM B 231 (2005) pp. 94-100. http://dx.doi.org/10.1016/j.nimb.2005.01.040

2004

  1. S. N. Mordyk, V. I. Voznyy, V. I. Miroshnichenko, A. G. Ponomarev, V. E. Storizhko and B. Sulkio-Cleff High brightness rf ion source for accelerator-based microprobe facilities // Review of Scientific Instruments 75 (2004) pp. 1922-1924. http://dx.doi.org/10.1063/1.1699520 2003
  2. A.G. Ponomarev, , V.I. Miroshnichenko, V.E. Storizhko Optimum collimator shape and maximum emittance for submicron focusing of ion beams. Determination of the probe-forming system resolution limit // NIM A 506 (2003) pp. 20-25. http://dx.doi.org/10.1016/S0168-9002(03)01380-9
  3. A.G. Ponomarev, K.I. Melnik, V.I. Miroshnichenko, V.E. Storizhko, B. Sulkio-Cleff Resolution limit of probe-forming systems with magnetic quadrupole lens triplets and quadruplets // NIM B 201 (2003) pp. 637-644. http://dx.doi.org/10.1016/S0168-583X(02)02229-2

2002

  1. S.N. Mordik, A.G. Ponomarev Third-order transfer matrices calculated for an electrostatic toroidal sector condenser including fringing-field effects // NIM A 480 (2002) pp. 359-372. http://dx.doi.org/10.1016/S0168-9002(01)01216-5

2001

  1. S. N. Mordik, A. G. Ponomarev Application of the matrizant method to calculate the third-order aberration coefficients for a sector magnetic field including fringing-field effects // Technical Physics 46 (2001) pp. 883-891. http://dx.doi.org/10.1134/1.1387552
  2. V.A. Brazhnik, V.I. Miroshnichenko, A.G. Ponomarev, V.E. Storizhko Optimization of magnetic quadrupole probe forming systems based on separated Russian quadruplet // NIM B 174 (2001) pp. 385-391. http://dx.doi.org/10.1016/S0168-583X(00)00523-1
  3. S. N. Mordik, A. G. Ponomarev Computation of the third-order matrizant for a sectorial electrostatic field // Technical Physics 46 (2001) pp. 466-271. http://dx.doi.org/10.1134/1.1365474

2000

  1. V.A. Brazhnik, S.A. Lebed, V.I. Miroshnichenko, A.G. Ponomarev, V.E. Storizhko Optimization of magnetic quadrupole probe-forming systems by the method of synthesis // NIM B 171 (2000) pp. 558-564. http://dx.doi.org/10.1016/S0168-583X(00)00330-X

1995

  1. V.A. Brazhnik, A.D. Dymnikov, D.N. Jamieson, S.A. Lebed, G.J.F. Legge, A.G. Ponomarev, V.E. Storizhko Numerical optimization of magnetic nonlinear quadrupole systems in an ion microprobe with given spot size on the target // NIM B 104 (1995) pp. 92-94. http://dx.doi.org/10.1016/0168-583X(95)00587-0

Annonce

On December 22, 2021, the National Academy of Sciences of Ukraine announced a competition to replace the director of the Institute of Applied Physics of the National Academy of Sciences of Ukraine. According to the Statute of the NAS of Ukraine, the right to nominate candidates for the position of director of a scientific institution has: the Presidium of the NAS of Ukraine, the Bureau of the relevant branch of the NAS of Ukraine, members of the NAS of Ukraine, the Academic Council of the institution. A candidate for the position of director of a state scientific institution must be fluent in the state language, have a doctorate or doctor of philosophy and work experience as a researcher and (or) research and teaching staff of at least 10 years.