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Abstract

In QCD, the deconfinement phase transition is accompanied by
the creation of the A0 = const condensate and strong temperature
dependent chromomagnetic H3, H8 and usual magnetic Hem fields.

A gauge invariance of the A0 condensation is proven within the
Nielsen identity method. It is shown that the effective actionW (A0, ξ)
in the background Rξ gauge accounting for the one-loop, two-loop and
plasmon diagram contributions satisfies the Nielsen identity. The A0

and Polyakov’s loop 〈L〉 are mutually related. We express W (A0, ξ)
in terms of 〈L〉 and obtain the effective potential of order parameter
W (Acl

0 ) which is independent of ξ and has a nontrivial minimum
position. Hence the Acl

0 condensate value is detected.
At this background, the color charges Q3

ind and Q8
ind are generated.

They are temperature dependent and produce related color electric
fields E3

color and E8
color.

The mechanism for stabilization of magnetic field at high temper-
ature due to the A0 presence is clarified. A number of applications
of the condensation in high temperature QGP is discussed.

All these may serve as signals of the phase transitions - creation
of quark-gluon plasma.
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1 Deconfinement phase transition (DPT)

Investigations of deconfinement phase of QCD is a hot topic nowadays.

Due to asymptotic freedom of non-Abelian gauge field interactions at

high temperature T ≥ 150 MeV quarks are deliberated from hadrons

and new matter state - quark-gluon plasma (QGP) - is formed. At lower

temperatures quarks are confined inside hadrons. The order parameter

of the DPT is the Polaykov loop (PL)

P (~x) = T exp
[
ig

∫
dx4A0(~x, x4)

]
. (1)

It equal 0 at low temperature and P 6= 0 at T > Td.

If A0(x4) = const

A0 6= 0 is also the order parameter of the DPT . The condensa-

tion of theA0 was demonstrated in either lattice simulations or in analytic

calculations. A0 6= 0 violates the Z(3) and gauge symmetries.

Review paper O.A. Borisenko, J. Bohacik, V.V. Skalozub,

A0 condensate in QCD, Fortschr. Phys. v. 43 (1995) 301.



2 EP and Nielsen’s identity

SU(2) gluodynamics in the background field Āa
µ = A0δµ0δ

a3 = const is

described by the Lagrangian

L =
1

4
(Ga

µν)
2 +

1

2ξ
[(D̄µAµ)a]2 − C̄D̄µDµC. (2)

The gauge field potential Aa
µ = Qa

µ + Āa
µ is decomposed in quantum

and classical parts. The covariant derivative in Eq.(2) is (D̄µAµ)a =

(∂µδ
ab − gεabcĀc

µ)Ab
µ, G

a
µν = (D̄µQν)

a − (D̄νQµ)a − gεabcQb
µQ

c
ν, g is a

coupling constant, internal index a = 1,2,3. The Lagrangian of ghost

fields C̄, C is determined by the background covariant derivative D̄µ(Ā)

and the total one Dµ(Ā + Q).



We obtain the two-loop effective potential

W (x) = W (1)(x) + W (2)(x), (3)

β4W (1)(x) =
2

3
π2[B4(0) + 2B4(

x

2
)],

β4W (2)(x) =
1

2
g2[B2

2(
x

2
) + 2B2(0))B2(

x

2
)] +

2

3
g2(1− ξ)B3(

x

2
)B1(

x

2
),

where Bi(x) are Bernoulli’s polynomials defined modulo 1 , x = gA0β
π .

In what follows we consider the interval 0 ≤ x ≤ 2.

Let us investigate the minima of it:

β4Wmin = β4W (0)− 1

192π2
(3− ξ)2g4,

x = g2(3− ξ)

8π2
, (4)

Hence the gauge invariance of the A0 condensation phe-

nomenon is questionable.



This problem was solved within Nielsen’s identity method

Skalozub (1992), (2021).

Nielsen’s identity for a general type effective potential reads

δ
′
W (φ) = W,iδχ

i(φ̄), (5)

which describes a variation of W (φ) due to variation of the gauge fixing

term F α(φ).

In field theory δχi is calculated from equation

δχi = −
〈
Di
α(φ)∆α

β(φ)δ
′
F β(φ)

〉
, (6)

Nielsen’s identity for two-loop EP (3) is

dW

dξ
=
∂W (2)

∂ξ
+
∂W (1)

∂x

∂x

∂ξ
= 0, (7)

Eq.(7) states that W (x, ξ) does not change along the characteristic

curves

x = x′ +
g2

4π2
B1(

x′

2
)(ξ − ζ) (8)

in the plain of variables (x, ξ), ζ is an arbitrary integration constant.

Along them a variation in ξ is compensated by the special

variation of x′.



It was shown,

Skalozub. A0 condensation, Nielsen’s identity and effective

potential of order parameter, Phys. Part. Nucl. Lett., v. 18

(2021) 738, that effectively to obtain ξ-independent EP expressed in the

terms of Polaykov’s loop it is sufficient to replace in (8) x′ → xcl., ξ → −1.

In particular, in (4).

We call it effective potential of order parameter WL(xcl) .

Other important order parameter is the temperature dependent chromo

(magnetic) fields H(T ) 6= 0 spontaneously created in the volume of the

QGP . This point will not be discussed in this talk. In the literature,

numerous applications of the PL in the QGP have been discussed. The

combinations of both A0 6= 0 and H(T ) 6= 0 were also investigated.

Physically, condensation of gluon fields is due to asymptotic freedom.

From very general principles of QFT it follows that the stability at high

temperature, field strength, momentum, chemical potential is reflected in

instability at small values of these variables. And wise-versa, zero-charge

behavior at large values of variables is reflected in stability of a vacuum.

Condensation generates stability factors.

It was observed in the literature that A0 is dominant at temperatures

not much grater Td. So, in what follows we consider this case.

We describe some new phenomena and effects taking place

due to the A0 presence.



Spontaneous vacuum magnetization at LHC

Recently (Skalozub, Minaiev (2018)) it was obtained that at LHC

experiment energies the QGP should be spontaneously magnetized.

The strengths of the large scale temperature dependent chromomag-

netic, B3(T ), B8(T ), and usual magnetic, H(T ), fields spontaneously gen-

erated after the DPT , were estimated.

The critical temperature for the magnetized plasma is found to be

Td(H) ∼ 110 − 120 MeV. This is essentially lower compared to the

zero field value Td(H = 0) ∼ 160 − 180 MeV usually discussed in the

literature. Due to contribution of quarks, the color magnetic fields act as

the sources generating H . The strengths of the fields are B3(T ), B8(T ) ∼
1018 − 1019G, H(T ) ∼ 1016 − 1017G for temperatures T ∼ 160 − 220

MeV.

The presence of strong large scale (color) magnetic fields modifies the

spectrum of the (color) charged particles that influence various processes

of interest.



3 QGP at A0 condensate

Quarks interact with electromagnetic field and gluons according the form

Lint. = ψ̄a[γµ(∂µδ
ab − iefAµδ

ab − ig(Qµ
λ

2
)ab)−mfδ

ab]ψb, (9)

where Aµ is potential of electromagnetic fields, Qµ is potential of gluon

field, ef is electric charge of quark with flavor f , mf is quark mass, g is

charge of strong interactions, a, b are color indexes.

Since quarks carry both electric and strong charges in the QGP the

effective interactions of color and white objects are possible due to the

quark virtual loops.

The A0 is an element of the center Z(3) of the SU(3) group. When

it is non zero,

both of these symmetries are broken.

The A0 is a specific classical external field. It can be introduced by

splitting

Qa
µ = (A0)aµ + (Qa

µ)rad.. of the gluon field potential. In what follows we

consider the case (A0)aµ = (A0)µδ
a3. This is for short.



4 Violation of Furry’s theorem in QGP

In the vacuum, Furry’s theorem holds:

The amplitudes having odd number of photon(gluon) lines,

generated by the fermion loops, equal zero.

It is the consequence of C-parity invariance. The contribution of

particles cancels the contribution of antiparticles.

The presence of the A0 condensate violates this symmetry. So that

new type processes are permissible.

In particular,

the diagram with one gluon external line results in an in-

duced color charge in the plasma. This may result in the scatter-

ing of quarks on this external charge.



Other interesting object is

Three line vertex - photon-photon-gluon - relates colored and

white states. This is new type effective vertex which generates new ob-

servable processes - inelastic scattering of photons, splitting (dissociation)

of gluons in two photons in the QGP . One of our goals is to calculate

this vertex and investigate these processes in the plasma.

These can be signals of the creation of QGP.



5 Gluon and photon spectra in QGP

Before doing that we have to detect the normal photon and gluon modes

presented in the QGP withA0. This can be done by solving the dispersion

equations for these fields.

M. Bordag, V. Skalozub (2019)

Basically, in the plasma the spectra of the excitations can be obtained

from the dispersion relations of the type

ω2 − ~k2 = ReΠ(ω,~k), (10)

where ω and ~k are the frequency and the momentum of the modes.

In the QGP the transverse and the longitudinal excitations present.

They are derived from relevant polarization tensors Π(ω,~k)T and Π(ω,~k)L.



The expression for the photon polarization tensor reads

Πµν(k) = −e2
∑
p4

∫
d3p

(2π)3β
Tr[γµ

(p + k)σγσ + m

(p + k)2 + m2
γν
pργρ + m

p2 + m2
]. (11)

Here, imaginary time formalism is used. γµ, ... are the Dirac matrixes,

p4 = 2πT (l + 1
2) + A0, kµ = (k4 = 2πT (n), ~k), and l, n = 0,±1,±2, ....

Such type objects must be calculated in the gluon sector of the model.

As an example, we show the high temperature dispersion equation for

the transversal plasma oscillations generated by the gluons

O. K. Kalashnikov, Progr. Theor. Phys. v. 92 (1994)

1207.:



(ik4)2 = g2T 2
[
B2(

x

2
) + B2(0)

]
ξ2
( ξ2

ξ2 − 1
− ξ

2
log

ξ + 1

ξ − 1

)
(12)

+iΓ.

In this formula, B2(z) = z2− |z|+ 1/6 is the Bernoulli polynomial, x =

A0/πT, ξ = (ik4 +A0)/|~k| and Γ is an imaginary part of the expression.

It describes the damping of the plasma oscillations.

The similar expression have been obtained for longitudinal oscillations

(plasmons) in the high temperature limit T →∞.

To find Dispersion relations we have to replace ik4 → ω. In such a

way all the quasi particle states of photons and gluons have been derived.

The A0 condensate stabilizes the infrared behavior of the plasma and

has a lover energy as compared to the empty vacuum case.



6 Induced charge in QGP

Generation of the strong charge due to one-line non-zero diagram.

I. Baranov, V. Skalozub ( 2018)

Its quark loop contribution can be calculate from the expression

Qquark
induced = −g

∑
p4

∫
d3p

(2π)3β
Trγ4[

λ3

2

(p + k)σγσ + mf

(p + k)2 + m2
f

]. (13)

Here, the momentum p = (p4 = p4 ± A0, ~p), p4 = 2πT (l + 1/2), l =

0,±1, ...., β = 1/T .

Similar expressions can be calculated from tadpole gluon diagram

having charged gluon loop.

These also hold for the color charge Q8.

The resulting induced charge changes the coupling constant of gluons

in the QGP.



We obtain in the high temperature limit (β → 0)

Qquark
3ind. = gA0

(T 2

3
− m3

T
+ O(1/T 3)

)
. (14)

In the presence of the induced charge the Slavnov-Taylor identity reads

p̂µΠ⊥µν(p̂4, ~p) = gJ3
ν . (15)

The induced current is

J3
ν = 2igQ3ind.uν, (16)

uν is plasma velocity.



7 Potentials of classical color fields

V. Skalozub ( 2019)

The induced color charges in the plasma result in the generation of

classical gluon potentials. We introduce a simple model motivated by

heavy-ion collisions.

We consider the QGP confined in the plate of the size L in z-axis

direction and infinite in x-, y- directions. For this geometry, we calculate

the classical potentials φ̄3 = G3
4, φ̄

8 = G8
4 by solving the classical field

equations for the gluon fields G3
4, G

8
4 generated by the induced charges

Q3
ind., Q

8
ind.. In doing so we take into consideration the results by

Kalashnikov (1994, 96) who calculated the gluon modes at the A0

background. Either transversal or longitudinal modes were derived. For

our problem, we are interested in the latter ones. The longitudinal modes

of fields G3
4, G

8
4 have temperature masses ∼ g2T 2. They are not affected

by the background fields.

The classical potential φ̄3 is calculated from the equation

[
∂2

∂x2
µ

−m2
D]φ̄3 = −Q3

ind.. (17)

Similar equation is for φ̄8.



Making Fourier’s transformation to momentum k-space we derive the

spectrum of modes, - k2
4 = k2

x + k2
y + k2

z + m2
D, where k2

z = (2π
L )2l2 and

l = 0,±1,±2, .... The discreteness of kz is due to the periodic boundary

condition for the plane: φ̄3(z) = φ̄3(z + L). The general solution to

Eq.(17) is

φ̄3(x4, ~x) = d + a e−i(k4x4−
~k·~x) + b ei(k4x4−

~k·~x). (18)

At zero induced charge, d = 0, and we have two well known plasmon

modes. In case of Q3
ind. 6= 0, the values a, b, d calculated from the con-

finement boundary condition

φ̄3(z = −L
2

) = φ̄3(z =
L

2
) = 0 (19)

result in the expression

φ̄3(z) =
Q3
ind.

m2
D

[
1− cos(kzz)

cos(kzL/2)

]
. (20)

There are no dynamical plasmon states at all. This is the main obser-

vation. In the presence of the induced charges, the static classical color

potentials (and, hence, fields) have to realize in the plasma.

By dimension analysis we have
Q3
ind.

m2
D
∼ gA0T

2

g2T 2 and gA0 ∼ g2T .

Hence, φ̄3(z) ∼ cT ,

where c ≥ 0 is a positive number!



For applications it is also necessary to get the Fourier’s transform

φ̄3(k) of the potential (20) to momentum space k. Fulfilling that for the

interval of z [−L
2 ,

L
2 ] we obtain

φ̄3(k) =
Q3
ind.L

m2
D

sin(kL/2)

(kL/2)

k2
z

k2
z − k2

, (21)

where the values of kz are given after Eq.(17).

The energy for a one mode with momentum kz is positive and equals

to

El =
(Q3

ind.)
2

m4
D

k2
z

2
L =

(Q3
ind.)

2

m4
D

2π2

L
l2. (22)

The total energy is given by the sum over l of energies (22).

In the presence of the induced charges the static gluon potentials with

positive energy should be generated. Dynamical longitudinal modes do

not exist. This is the consequence of the condition Eq.(19).

Obvious that such a situation is independent of the form of the bag

where the plasma is confined. In general, we have to expect that the color

static potentials φ̄3, φ̄8 have to exist in the QGP and produce specific

processes.



8 Effective γγG vertexes in QGP

Explicit form for the photon-photon-gluon vertex, its dominant terms are

M. Bordag, V. Skalozub (2019)

Πµνλ(k1, k2, k3) = δ(k1 + k2 + k3)(−e2gΛ)
∑
p4

∫
d3p

(2π)3β
(Γ

(1)
µνλ + Γ

(2)
µνλ),

(23)

Λ = −16A0m
2
f ,

Γ
(1)
µνλ =

δµνδλ4 + δµλδν4 + δλνδµ4

d2(p)d2(p, k1)d2(p, k3)
, (24)



and

Γ
(2)
µνλ =

−2Sµνλ
d2(p)d2(p, k1)d2(p, k3)

((p + k3)4

d2(p, k3)
+

(p− k1)4

d2(p, k1)
+

p4

d2(p)

)
, (25)

where d2(p) = p2 + m2
f , d

2(p, k1) = (p − k1)2 + m2
f , d

2(p, k3) = (p +

k3)2 + m2
f ,

Sµνλ = δµν(p+ k1 + k3)λ + δλν(p− k1− k3)µ + δµλ(p− k1 + k3)ν. (26)

In the above formulas, k1, k3 are momenta of ingoing pho-

tons and k2 = −(k1+k2) is momentum of ingoing color neutral

gluon Qa=3.

All the other three-vertexes composing photons and gluons are zero.

So, we have a possibility for direct interaction of color and white world.



The most important points:

1. The vertex is not transversal

2. It relates transversal and longitudinal modes of photons

and gluons

In particular, new phenomena such as scattering of photons on the

QGP as an effective vertex become possible. All the necessary ingredients

to investigate these are calculated. These are the spectra of photons and

gluons in the QGP, the effective charges.

There are two sorts of the processes of interest:

1) Scattering of photons on the plasma as on the external filed gener-

ated due to quark current and induced color charge. Radiation of photon

pairs from plasma.

2) Scattering on the real gluon excitations in the plasma.

In these processes the plasma exhibits itself via the effective vertex

and therefore the inelastic (or even elastic) scattering may be realized.

Specific values for these cases depend on the characteristics of QGP .



Scattering of photons in the QGP has to be estimated by two pa-

rameters - induced charge and deviation of of the photon beams from an

initial direction.

Other important expected process is splitting of the gluon field G3, G8

generated by the induced charge Q3
ind., Q

8
ind. in two photons which have

to move along the direction of the plasma motion.

These processes are basically different from the scattering

of photons on chaotically moving particles of usual plasma.

9 Conclusion

According to basic principles of QCD, the QGP has to be either mag-

netized with strong long range temperature dependent magnetic fields

B3(T ), B8(T ), H(T ) (that lowers the deconfiniment transition tempera-

ture Td) or charged with color induced charges Q3
ind., Q

8
ind..

Due to violation of Furry’s theorem, in the QGP new type

phenomena have to be generated. Among them the de-

viation of the photon beam from its initial direction and

the change of the frequency. Generation of induced color

charges, gluon splitting in two photons. These are the dis-

tinguishable signals of the QGP creation.



In paper

M. Bordag, V. Skalozub. The effective potential of gluody-

namics in the background of Polyakov loop and colormag-

netic field. Eur. Phys. J C 82 (2022) 390 the analytic expression

for the EP WL(H,Acl
0 ) which generalizes the expression (3) has been in-

troduced. In case H = 0 it coincides with the latter one. I case Acl
0 = 0

it reproduces the known expression for the two-loop ffective potential of

chromomagnetic fields. This potential opens prospects for description of

new effecs and phenomena in QGP. These are problems for future.
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